7 research outputs found

    Water balance, extent and efficiency of irrigation in the Lake Tana basin, Ethiopia

    Get PDF

    Assessment of irrigation expansion and implications for water resources by using RS and GIS techniques in the Lake Tana Basin of Ethiopia

    No full text
    Understanding irrigation expansion and its implications on water availability is critical for development of decision support tools for sustainable water resources planning. Irrigation expansion in the Lake Tana Basin of Ethiopia from 1986 to 2016 was examined using image classification from thematic maps and remote sensing imagery (Landsat5-8 TM/ETM+, OLI). The soil-adjusted vegetation index (SAVI) imagery was used to identify irrigated cropland based on greenness. Irrigation water consumption was determined by calculating irrigation water requirements of the major crops grown with irrigation and using the estimated irrigated land size of the basin. Irrigated croplands have increased in area from 55 to 65 % in the last past 30 years (from 1986 to 2016). The classification obtained is accurate to the level of 89.6% and Kappa coefficient of 0.83. The Landsat imagery is useful in tracking of the spatiotemporal patterns of irrigated croplands for water management purposes, especially in data deficient areas dotted sparsely by small holder irrigated farms. The results indicated that irrigation consumption in the basin increased from 0.380 km(3) year(-1) in 1986 to 0.798 km(3) year(-1) in 2016. It is found that the available water cannot sustain the projected irrigation expansion unless alternative water sources are found. Also, more precise irrigation technologies have to be implemented to minimize water losses

    Performance of small-scale irrigation schemes in Lake Tana Basin of Ethiopia : technical and socio-political attributes

    No full text
    This study was conducted to investigate technical and socio-political attributes that lead to the underperformance of two selected irrigation schemes (Shina and Bebeks) in the Lake Tana floodplains, Ethiopia. Irrigation application efficiency (AE) at nine experimental fields showed a wide range, from 20 to 80%, but was mostly between 40 and 60%. Irrigation water-use efficiency (IWUE) varied from 1.9 to 7.2 kg m(-3) for onion and 0.9 to 1.2 kg m(-3) for maize. The lined and earthen canal conveyance losses in Bebeks were 0.037 and 0.047 l s(-1) m(-1), whereas in Shina they were 0.033 and 0.044 l s(-1) m(-1), respectively. The overall consumed ratio (OCR) of water was 0.58 for Bebeks and varied from 0.73 to 1.2 in Shina. Both schemes are performing below the standard based on technical performance indicators. Irrigation water user associations (WUAs) were not implemented, but irrigation committees (ICs), composed of local political leaders, are managing both schemes. Canal and reservoir sedimentation from erosion of upstream catchment areas during the rainy season was the major problem

    Estimating the actual evapotranspiration and deep percolation in irrigated soils of a tropical floodplain, northwest Ethiopia

    No full text
    The deep percolation and actual evapotranspiration from flood irrigation in tropical floodplains were predicted using a numerical model, Hydrus-1D, and a bucket type water balance model. Field experiments were conducted on onion and maize crops grown from December 2015 to May 2016 in small irrigation schemes found in the Lake Tana floodplains of Ethiopia. Experimental fields were selected along a topographic transect to account for soil and groundwater variability. Irrigation volumes were measured using V-notches and irrigation depths (400-550 mm) were calculated, and daily groundwater levels were monitored manually from piezometers installed in the fields. The soil profiles were described at each field and physical properties (texture, FC, PWP, BD, and OM) were measured at each horizon which were used to derive model input parameters. Soil hydraulic properties (residual and saturated moisture content, saturated hydraulic conductivity, parameters related to: pore size distribution n, air entry alpha and pore connectivity 1) were derived using KNN pedotransfer functions for tropical soils and fitted using Retention Curve Program for Unsaturated Soils, RETC. The seasonal actual evapotranspiration estimated by Hydrus and water balance models ranged from 320 to 360 mm for onion and from 400 to 470 mm for maize. The seasonal deep percolation estimated from both models was 12-41% of applied irrigation and with this flood irrigation management; the deep percolation is very high. Implementing precise irrigation and water saving practices that minimize deep percolation and unproductive excessive consumptive use are required to achieve the growing food demand with the available water. When less detailed information is available, the water balance model can be an alternative to predict deep percolation and actual evapotranspiration
    corecore